Astroglial pentose phosphate pathway rates in response to high-glucose environments

نویسندگان

  • Shinichi Takahashi
  • Yoshikane Izawa
  • Norihiro Suzuki
چکیده

ROS (reactive oxygen species) play an essential role in the pathophysiology of diabetes, stroke and neurodegenerative disorders. Hyperglycaemia associated with diabetes enhances ROS production and causes oxidative stress in vascular endothelial cells, but adverse effects of either acute or chronic high-glucose environments on brain parenchymal cells remain unclear. The PPP (pentose phosphate pathway) and GSH participate in a major defence mechanism against ROS in brain, and we explored the role and regulation of the astroglial PPP in response to acute and chronic high-glucose environments. PPP activity was measured in cultured neurons and astroglia by determining the difference in rate of (14)CO(2) production from [1-(14)C]glucose and [6-(14)C]glucose. ROS production, mainly H(2)O(2), and GSH were also assessed. Acutely elevated glucose concentrations in the culture media increased PPP activity and GSH level in astroglia, decreasing ROS production. Chronically elevated glucose environments also induced PPP activation. Immunohistochemical analyses revealed that chronic high-glucose environments induced ER (endoplasmic reticulum) stress (presumably through increased hexosamine biosynthetic pathway flux). Nuclear translocation of Nrf2 (nuclear factor-erythroid 2 p45 subunit-related factor 2), which regulates G6PDH (glyceraldehyde-6-phosphate dehydrogenase) by enhancing transcription, was also observed in association with BiP (immunoglobulin heavy-chain-binding protein) expression. Acute and chronic high-glucose environments activated the PPP in astroglia, preventing ROS elevation. Therefore a rapid decrease in glucose level seems to enhance ROS toxicity, perhaps contributing to neural damage when insulin levels given to diabetic patients are not properly calibrated and plasma glucose levels are not adequately maintained. These findings may also explain the lack of evidence for clinical benefits from strict glycaemic control during the acute phase of stroke.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Cell-Free Hydrogen Production from Glucose: Extension

Our long term objective is to develop efficient and cost-effective technology for the production of hydrogen from glucose, xylose, and other cellulosic hydrolysis products. We will use cell-free technology to provide precise control over metabolic fluxes while minimizing the toxic effects of cellulosic byproducts. Initial process calculations suggest the potential for high conversion efficienci...

متن کامل

Molecular Identification of the Most Prevalent Mutation of Glucose-6-Phosphate Dehydrogenase Gene in Deficient Patients in Sistan and Balochestan Province of Iran

Glucose-6-phosphate dehydrogenase (G6PD) in humans is an X-chromosome-linked disorder and housekeeping enzyme, vital for the survival of every cell. It catalyses the oxidation of glucose-6-phosphate to 6-phospho gluconate in the first committed step of the pentose phosphate pathway, which provides cells with pentoses and reducing power in the form of NADPH. NADPH is required to protect the cell...

متن کامل

Molecular Identification of the Most Prevalent Mutations of Glucose-6-Posphate Dehydrogenase (G6PD) Gene in Deficient Patients in Khorasan Province of Iran

Glucose-6-phosphate dehydrogenase (G6PD) enzyme catalyses the first step in pentose phosphate pathway (conversion of glucose-6-phosphat to 6-phospho gluconat) which provides cells with pentoses and reduction power in the form of NADPH. In the present study we have analyzed the G6PD gene mutations in 76 patients with a history of favism in Khorasan province in Iran. DNA samples were analyzed for...

متن کامل

MOLECULAR IDENTIFICATION OF THE MOST PREVALENT MUTATION OF GLUCOSE-6-PHOSPHATE DEHYDROGENASE (G6PD) GENE IN DEFICIENT PATIENTS IN GILAN PROVINCE

Glucose-6-Phosphate Dehydrogenase (G6PD) is a cytosolic enzyme which its main function is to produce NADPH in the red blood cells by controlling the step from Glucose-6-Phosphate to 6-Phospho gluconate in the pentose phosphate pathway. G6PD deficiency is the most common X-chromosome linked hereditary enzymopathy in the world, that result in reduced enzyme activity and more than 125 different mu...

متن کامل

Cardiac‐specific Hexokinase 2 Overexpression Attenuates Hypertrophy by Increasing Pentose Phosphate Pathway Flux

BACKGROUND The enzyme hexokinase-2 (HK2) phosphorylates glucose, which is the initiating step in virtually all glucose utilization pathways. Cardiac hypertrophy is associated with a switch towards increased glucose metabolism and decreased fatty acid metabolism. Recent evidence suggests that the increased glucose utilization is compensatory to the down-regulated fatty acid metabolism during hyp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2012